返回
笔墨网
菜单
唯美句子 励志句子 伤感句子 人生感悟 心情句子 爱情句子 经典句子 句子大全

为什么说自然数集是有限集合mdashmdash动态集合论

来源:新资讯 发布时间:2024-07-29 11:06:48 点击:59次
笔墨网 > 新资讯 > > 为什么说自然数集是有限集合mdashmdash动态集合论

#数学# 你觉得自己懂不懂加减乘除?

我的科大校友、中国科学院物理研究所研究员曹则贤博士,写了一篇文章《少年,要上大学了吧?学点加减乘除呗》,介绍了加减乘除概念的演变。我相信大多数人看了以后,会发现自己不懂加减乘除。

实际上,他介绍的是数的扩展过程。

初,我们很容易就能接受自然数:1、2、3、4等等。

然后,为了表示像3 - 3这样的数,我们引入了0。

然后,为了表示像3 - 5这样的数,我们引入了负数。

此外,为了表示像3/5这样的数,我们引入了有理数。

然后,有一个重大发现,根号2不是有理数(你知道怎么证明吗?),即它不能表示成两个整数的商。为此,我们不得不引入无理数。有理数和无理数的整体,就是实数。

然后,即使在无理数内部,也有些无理数是比较简单的,有些是比较复杂的。例如根号2就很简单,它是

x^2 - 2 = 0

这个整系数方程的根。而圆周率π就很复杂,它不能表示成任何整系数方程的根(你知道怎么证明吗?)。我们把能够表示成整系数方程的根的数称为代数数,把不能的称为超越数。超越数的存在,就是一件惊人的事。

然后,在解方程时,我们会遇到负数开平方。这该怎么办呢?为此,我们引入了复数,即a + bi,其中i是-1的平方根。

复数可以理解为二元数,即由两个实数组成的一个整体。这些二元数可以按照一定的规则进行加减乘除,而且加减乘除的结果仍然在二元数的集合之内,这叫做“封闭性”。一旦你这么理解,问题立刻又来了:能不能扩展到更多元的数呢?

直截了当的想法是,下一个应该是三元数。数学家哈密顿(William Rowan Hamilton,1805 - 1865)思考了十几年,想提出三元数,但一直不成功。直到1843年的一天,他突然意识到,要满足加减乘除的封闭性,下一个至少需要是四元数,而不是三元数。

就这样,我们从自然数出发,一路狂奔到了四元数。一个四元数可以写成a + bi + cj + dk,其中a、b、c、d是实数,i、j、k是三个单位虚数,它们的乘法是反对易的,即

ij = -ji = k。

由此导致,四元数不满足交换律,即

p × q一般而言不等于q × p。

这跟实数和复数是个巨大的区别。

这还没完。继续扩展会得到什么?

受到哈密顿的启发,同样是在1843年,另一位数学家John Graves提出了八元数。八元数连乘法的定义都不了,有480种可能的定义。八元数既不满足交换律,也不满足结合律,即

p × (q × r)一般而言不等于(q × p) × r。

虽然这么复杂,八元数还是有个优点:它满足加减乘除的封闭性。再扩展就不行了。有一个定理叫做Hurwitz定理,它说的是:只有1-, 2-, 4-, 8-元数(即实数、复数、四元数、八元数)有除法,即两数相除还是那种数。

所以,我们终于可以告一段落了。现在,你觉得你懂加减乘除了吗?

上一篇:s9012是什么管
下一篇:没有了

相关新资讯

新资讯相关栏目

推荐新资讯

  • 人民币汇率正在释放贬值压力
  • 教你3种韩式部队火锅的做法食欲满满麻辣爽口太满足了
  • N刷不腻的穿越重生经典小说合集高能反转口碑逆袭
  • 从贵妃到冷宫弃妃皇上想要她长教训但又偷偷地心疼真纠结
  • 重要通知关于已纳税单位参加企业社会保险的通知
  • 真的是全世界失眠科幻惊悚电影无眠梦魇人类失去
  • NFL汤姆布雷迪宣布复出在坦帕湾海盗继续第23个赛季
  • 南京解放雄师渡江蒋家王朝终覆灭
  • 新新资讯

  • 为什么说自然数集是有限集合mdashmdash动态集合论
  • s9012是什么管
  • 什么是药引子
  • 嫁给孙策周瑜的大小乔生活真的那么幸福吗结局让人惋惜
  • 笑傲江湖刘家满门喋血刘正风和曲洋为何都忍心不救
  • 男医生直播妇科手术处理结果来了
  • 朱执信被孙中山称为革命中的圣人
  • 网监办法出台你想知道的都在这里